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Stiffened panels are used widely in aerospace and marine vehicles, and it is often
necessary to predict high frequency noise and vibration levels in structures of this type. The
present work is concerned with modelling high frequency vibration transmission through
a stiffened panel within the context of Statistical Energy Analysis (SEA). It is proposed that
the panel can be modelled as a damped coupling element between two adjoining structural
components, and the transmission and absorption coefficients calculated on the basis of
periodic structure theory. The method is applied to the forced response of two panels which
are coupled by a stiffened panel and a comparison is made with (i) exact results obtained
by using the dynamic stiffness method, (ii) results yielded by a conventional SEA approach,
and (iii) results yielded by wave intensity analysis (WIA). The method is found to yield
accurate response predictions which are a significant improvement upon the conventional
SEA and WIA results obtained for the example system. Previous work has shown that
vibration transmission through a periodic system can be very sensitive to structural
disorder, and the present study includes an investigation of the effects of disorder in the
stiffener spacing.
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1. INTRODUCTION

Many types of engineering structure are subjected to high frequency excitation, in the sense
that the induced response has a vibrational wavelength which is small in comparison to
the overall system dimensions. Typical examples include the response produced in a
turbo-prop aircraft such as the Fokker F50 at the harmonics of the blade passing frequency
(approximately multiples of 100 Hz), and the vibration levels induced on board a ship by
the engines and the propeller, where cavitation noise can extend beyond 500 Hz. The short
wavelength of the structural response leads to severe analytical difficulties in attempting
to predict the system vibration levels at the design stage: for example, the conventional
finite element method typically requires the use of around four elements per half
wavelength of deformation, and this generally leads to models which are of a
computationally impracticable size at high frequencies.

Much research effort has been devoted to the development of alternative analysis
techniques which are capable of predicting high frequency vibration levels, and the most
well known alternative approach is perhaps Statistical Energy Analysis (SEA) [1]. In SEA
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no attempt is made to recover the detailed displacement pattern of the structure, but rather
the structure is modelled as an assembly of ‘‘subsystems’’ and the aim is to predict the
vibrational energy level of each subsystem. This is done by establishing a set of power
balance equations which are based on the key assumption that the energy flow between
two connected subsystems is proportional to the difference in the subsystem modal
energies. While SEA has been applied with considerable success to a wide range of
structures, there is a continuing debate over the theoretical validity of the method (see,
for example, references [2–4]), and it is true to say that the method yields very poor results
for certain types of structure. One practical difficulty associated with the application of
the method to aerospace and marine vehicles arises from the widespread use of stiffened
plating in these structures; as yet there is no clear guideline as to how such plating is best
incorporated within an SEA model, and this issue is discussed in what follows.

The present study is concerned with vibration transmission through a plate which is
stiffened by a series of parallel stiffeners which are (nominally) evenly spaced. This
situation can be likened to vibration transmission along an aircraft fuselage or a section
of a ship hull, with the present stiffeners taking on the role of the structural frames. It is
often argued that a stiffened plate can be modelled to a reasonable degree of accuracy by
‘‘smearing’’ the stiffener properties to produce an equivalent orthotropic plate. However,
such an approach can be expected to be successful only if (i) the half wavelength of the
panel vibration exceeds the stiffener spacing, and (ii) the stiffeners are sufficiently weak in
bending relative to the plate bending stiffness. Condition (ii) depends to some extent upon
the boundary conditions which are imposed on the panel edges—a stiffened panel which
is simply supported on the edges parallel to the stiffeners and free on the other two edges
will tend to have lower modes of vibration which are reasonably well predicted by a
smeared model. However, if the panel is simply supported on all four sides then ‘‘rigid
body’’ motion of the stiffeners will be restrained, and the stiffener bending stiffness will
have a crucial influence on the nature of the lower modes of vibration. For aerospace and
marine vehicles the frames are relatively stiff, and certainly at higher frequencies the
conditions required for the successful application of the smearing approach will not be met.

In SEA terms, the other extreme to a ‘‘smeared’’ model of a stiffened plate would be
to model each inter-stiffener plate element as a subsystem (or, more generally, as three
subsystems to allow for the three types of wave motion which can occur in a flat plate).
With this approach, the stiffeners act as coupling elements between the SEA subsystems,
and the associated coupling loss factors can be found by considering wave transmission
across a stiffener [5]. This general modelling approach has been applied with great success
to box-type structures by Heron [6], although in that case the structure did not contain
stiffened plates—rather, the stiffeners were used to assemble a set of relatively large panels.
When applied to a stiffened plate this type of approach could face three potential
difficulties: (i) the mode count in each plate element may be insufficient to justify inclusion
as a separate SEA subsystem; (ii) the method could lead to a very large SEA model for
a complete vehicle; and (iii) the method cannot capture any ‘‘periodic structure’’ type
behaviour of the stiffened panel. Point (iii) is related to the fact that a periodically stiffened
structure has very distinctive vibration characteristics, as outlined in what follows.

A periodic structure is defined as a structure that is composed of a number of identical
units which are connected in a regular pattern. The stiffened plate structure considered in
the present work forms a one-dimensional periodic structure, in which the basic unit
consists of an inter-stiffener plate element with an attached stiffener. It is well known that
wave motion through a structure of this type can occur only within certain frequency
intervals known as pass bands; the pass bands are separated by stop bands in which
propagating wave motion cannot occur. The incorporation of this type of behaviour within
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an SEA model has received little attention other than in the work of Keane and Price [7]
who considered two coupled periodic rod structures. Each rod structure was modelled as
an SEA subsystem in which the modal density was calculated on the basis of periodic
structure theory, it being noted that the natural frequencies of a periodic structure tend
to lie within the pass bands. While this approach led to excellent results for the structure
considered, it would appear to be difficult to extend the methodology to more general
situations—not in terms of the validity of the method, but rather in terms of the practical
calculation of the coefficients which appear in the SEA equations. For this reason a quite
different approach is used here to model the stiffened plate: the plate is modelled as a
non-conservative coupling element between different parts of the structure. Specifically, a
three-part structure is considered, in which the middle plate is stiffened. The two outer
plates are modelled as conventional SEA subsystems, while the middle plate is considered
to act as a coupling element. The properties of this coupling element are calculated on the
basis of periodic structure theory, and in this regard use is made of recent results
concerning the band-averaged transmission coefficient of a periodic structure [8]. There has
been much debate as to how the energy loss associated with a non-conservative coupling
should be modelled within the context of SEA [9–11], and this issue is dealt with in the
present work simply by using the absorption coefficient of the coupling element to make
an appropriate addition to the loss factors of the adjoining elements. The general theory
behind this approach is outlined in section 2, while the absorption and transmission
coefficients associated with the stiffened plate are derived in section 3. A number of
example applications are presented in section 4, where a comparison is made with exact
results derived by using the dynamic stiffness method [12]. It is found that the present
approach leads to an accurate prediction of the vibration transmission through the panel,
while the conventional SEA approach (based on the modelling each inter-stiffener panel
as a subsystem) can lead to a severe underestimate of the transmitted power. It is shown
that the SEA results can be significantly improved by allowing for the wave filtering effect
of the stiffeners by using a technique known as Wave Intensity Analysis [13], and the effect
of structural disorder on the transmitted power is also considered in this section. Finally,
the practical implications of the present work are discussed in section 5.

2. SEA MODELLING OF NON-CONSERVATIVELY COUPLED SUBSYSTEMS

A schematic of two two-dimensional subsystems which are coupled along an edge is
shown in Figure 1. In the present context, the two subsystems represent unstiffened plates,
while the coupling represents a stiffened plate which both transmits and dissipates energy.

Figure 1. A schematic of the two-subsystem SEA model.
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For the purposes of the present argument, the stiffened plate is assumed to have symmetric
stiffeners so that only the bending motion of each plate need be considered.

An SEA model of the system shown in Figure 1 can be derived by considering energy
flow across the coupling, and this is most easily done by considering the transmission of
elastic wave motion. If the time averaged vibrational energy in subsystem 1 is represented
by E1, then the energy density can be written as E1 /A1, where A1 is the area of the
subsystem. Now if it is assumed that the wave motion in the subsystem is ‘‘diffuse’’ so that
the energy flow is evenly spread among all directions, then the energy flow associated with
the angular range u to u+du can be written as cg1 (E1/A1) (du/2p), where cg1 is the wave
group velocity. This is strictly the energy flow per unit length measured along the wave
crest, so that the power incident on the coupling is cg1 (E1 /A1) (du/2p)L cos u, where L is
the length of the coupled edge. Now part of this power is transmitted to subsystem 2 and
part is dissipated within the coupling, with the remainder being reflected back into
subsystem 1. The fraction of power which is transmitted is given by the transmission
coefficient t12 (u), while the fraction absorbed is given by the absorption coefficient a12 (u).
The total power lost through the coupling can thus be written as

Ploss =g
p/2

−p/2

[t12 (u)+ a12 (u)] (E1 cg1 L/2pA1) cos u du=[�t12 �+ �a12 �]E1 cg1 L/pA1), (1)

where the diffuse field transmission and absorption coefficients �t12 � and �a12 � are defined
as

�t12 �= 1
2 g

p/2

−p/2

t12 (u) cos u du, �a12 �= 1
2 g

p/2

−p/2

a12 (u) cos u du. (2, 3)

Now subsystem 1 will also gain power through the junction from subsystem 2. By analogy
with equation (1), this power can be written in the form

Pgain = �t21 �(E2 cg2 L/pA2). (4)

The total power balance equation for subsystem 1 then takes the form

vh1 E1 +Ploss −Pgain =P1, (5)

where the first term on the left is the power dissipated internally (h1 being the loss factor),
and the term on the right is the power input from external sources. Equations (1)–(5) can
be combined to yield the power balance equation in the standard SEA format [1],

vh1eff E1 +vh12 n1 (E1 /n1 −E2/n2)=P1, (6)

where

ni =vAi /(2pci cgi ), h12 = cg1 L�t12 �/(pvA1), h1 eff = h1 + h12�a12 �/�t12 �. (7–9)

Here ni is the modal density of subsystem i (ci is the phase speed), and h12 is the coupling
loss factor. It should be noted that in deriving equation (6) the reciprocity relation
�t12 �/c1 = �t21 �/c2 has been employed. The power balance equation for subsystem 2 has
precisely the form of equation (6) with the subscripts 1 and 2 interchanged.

It has been shown in this section that under the normal ‘‘diffuse wave’’ set of
assumptions, the basic form of the SEA equations is unchanged by the presence of
dissipation in a coupling element. The only detailed changes are that (i) the transmission
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Figure 2. A schematic of the transmission model.

coefficient used in the coupling loss factor is that which arises in the presence of dissipation,
and (ii) an appropriate addition must be made to the subsystem loss factors to account for
absorption by the junction. The latter point is consistent with the findings of Beshara and
Keane [11] regarding the appropriate form of the SEA equations for non-conservatively
coupled subsystems. Furthermore, equation (9) is analogous to the subsystem loss factor
employed by Craik [14] to allow for boundary absorption effects.

The transmission and absorption coefficients which are associated with a periodically
stiffened plate element are derived in the following section.

3. TRANSMISSION AND ABSORPTION COEFFICIENTS

As mentioned in the Introduction, the present concern is with vibration transmission
through a stiffened panel, and a schematic of the system under investigation is shown in
Figure 2. In order to apply the analysis of section 2 to this structure it is necessary to
compute the transmission and absorption coefficients �t12 � and �a12 � of the stiffened
panel, and two methods of doing this are outlined in the present section. The first approach
is an exact calculation in which the transmission through an M-bay stiffened panel is
analysed by using a variant of the dynamic stiffness method [12]. In order to facilitate this
calculation it is assumed that the stiffened panel is simply supported along the two
longitudinal edges, and the stiffeners are taken to be symmetric, so that there is no coupling
between the in-plane and out-of-plane motion of the plate. The second method of
calculating �t12 � and �a12 � is an approximate and computationally efficient technique
which is based on the one-dimensional waveguide theory developed in reference [8]; with
this approach it is only necessary to calculate the wave transmission coefficient of a single
plate/stiffener junction.

3.1.  

The fact that the structure shown in Figure 2 is simply supported along the longitudinal
edges implies that the out-of-plane displacement may be expressed as a Fourier series
involving terms proportional to sin (npx/b), where n is an integer and b is the panel width.
For each value of n, bending wave transmission through the system can be analyzed by
using a variant of the dynamic stiffness method (DSM) presented in reference [12]:
essentially, the DSM is used to derive the dynamic stiffness matrix of the stiffened panel,
and this is then coupled to two semi-infinite plate elements which carry the incident,
reflected and transmitted waves (see Figure 2). Details of only the semi-infinite plate
elements and the overall wave transmission calculation procedure are given in what
follows, as full details of the dynamic stiffness analysis of the stiffened panel are available
in reference [12].
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The equation of motion which governs the linear, isotropic bending behaviour of the
jth ( j=1, 2) semi-infinite plate may be written as

Dj 9
4w+ rj ẅ =0, (10)

where w is the out-of-plane displacement and Dj and rj are the flexural rigidity and mass
per unit area of the jth plate. The elastic tractions (shear S and bending moment M) on
the edge which is attached to the stiffened panel (y=0, see Figure 2) may be written in
the forms [12]:

S=−Dj 013w
1y3 + (2− sj )

13w
1y 1x21, M=Dj 012w

1y2 + sj
12w
1x21, (11, 12)

where sj is the Poisson ratio.
The fact that the plate is simply supported on the two longitudinal edges implies that

the displacement can be expressed in terms of waves components of the form [12]

w= a sin (npx/b) e(ivt+ mBy), (13)

where n is the number of standing half-waves across the plate, a is a complex amplitude
and mB is the appropriate exponent associated with a specified value of n. It follows from
equation (10) that the admissible solutions for mB are given by

m2
B =(np/b)2 2 k2

b , kb =(rj v
2/Dj )1/4. (14, 15)

Except for the presence of an incident wave, which will be introduced at a later stage
in the analysis, the wave motion in each semi-infinite plate must either propagate towards
infinity or decay in this direction. This implies that mB must be either positive real or
positive imaginary for the left hand plate, and either negative real or negative imaginary
for the right hand plate, thus allowing two valid solutions for mB to be identified for each
plate. It then follows from equation (13) that the displacement and rotation of the junction
line (y=0) of either plate can be written as

$we

ue%=$ 1
mB1

1
mB2%$aB1

aB2% sin 0npx
b 1 eivt, (16)

where mB1 and mB2 are the two valid roots for plate in question, and aB1 and aB2 are the
complex amplitudes of the two associated complementary functions. Similarly, equations
(11) and (12) can be used to express the edge tractions in terms of aB1 and aB2. By
eliminating aB1 and aB2, the following expression between the edge tractions and the
displacements may be obtained:

$ Se

Me%=
Dj

mB1 − mB2

×$ mB2 m3
B1 − mB1 m3

B2

m3
B2 − m3

B1 + (2− si ) (mB1 − mB2) (np/b)2

m3
B2 − m3

B1 + (2− sj ) (mB1 − mB2) (np/b)2

m2
B1 − m2

B2 %
×$we

ue%. (17)
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The matrix that appears in this equation is the dynamic stiffness matrix of the
semi-infinite plate. The dynamic stiffness matrix of the stiffened panel may be found by
employing the analysis presented in reference [12]. With this approach, the panel is
modelled as an assembly of plate elements, and to this end a node is introduced at each
plate/stiffener junction. The stiffeners may either by modelled by using Euler–Bernoulli
beam theory, or a fully dynamic model may be developed by using plate elements to model
the behaviour of the flanges and webs. The net outcome of the stiffened panel model is
a Q-degree-of-freedom dynamic stiffness matrix; degrees of freedom 1 and 2 are taken to
represent the attachment to the left-hand semi-infinite plate, while degrees of freedom
Q−1 and Q play the same role for the right-hand semi-infinite plate. The assembled
dynamic stiffness equations for the complete structure (for a specified number of lateral
half-wavelengths n) then have the form

DL11 +DE11 DL12 +DE12 · · · 0 0K L
G GDL21 +DE21 DL22 +DE22 · · · 0 0
G G

0 0 DE 0 0G G
0 0 · · · DR11 +DE(Q−1) (Q−1) DR12 +DE(Q−1)QG G
0 0 · · · DR21 +DEQ(Q−1) DR22 +DEQQk l

wLe SLeK L K L
uLe MLeG G G G

G G G G× ··· = ··· , (18)
G G G G

wRe SReG G G G
k l k luRe MRe

where the L and R subscripts represent the left and right semi-infinite plates and the E
subscript represents the embedded stiffened panel. Equation (18) may be abbreviated in
the form

Db=F, (19)

where F is the dynamic loading vector that arises from an incident wave of amplitude ainc

on the left-hand plate. All but the first two entries of this vector are zero and, following
reference [5], the two non-zero entries, FL say, can be written as

FL =DL b'L −F'L , (20)

where DL is the dynamic stiffness matrix of the left-hand plate. The entries of the vectors
b'L =(w'e u'e )T and F'L =(S'M')T have the form

w'e = ainc , u'e = mainc , (21, 22)

S'=−ainc Dj(m3 − (2− sj ) (np/b)2m), M'= ainc Dj (m2 − (np/b)2sj ), (23, 24)

where m is the negative imaginary root yielded by equation (14).
Equation (19) can be solved to yield the degrees of freedom we and ue for each

semi-infinite plate which can then be substituted into equation (16) to provide the complex
amplitudes of the transmitted and reflected waves (at and ar , say) for the specified number
of transverse half-waves, n. The transmission and reflection coefficients are then defined
as t= =at /ainc =2 and r= =ar /ainc =2.
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The transmission and absorption coefficients required in equations (8) and (9) are those
associated with a diffuse incident wavefield. As described in section 2, the diffuse
transmission and reflection coefficients are defined as

�t(v)�= 1
2 g

p

0

t(v, f) sin f df, �r(v)�= 1
2 g

p

0

r(v, f) sin f df, (25, 26)

where f is the angle between the incident wave heading and the junction line (u= p/2−f

in equations (2) and (3)). In the present case t(v, f) does not vary continuously over the
range of f, but discretely with integer values of n. The relationship between f and n is

f=cos−1(np/bkb ). (27)

The diffuse transmission and reflection coefficients, at frequency v, can then be
evaluated by averaging t and a over and the appropriate range of values of n. The
absorption coefficient then follows from the relation

�a�=1·0− �t�− �r�. (28)

This procedure can be used to calculate the transmission and absorption coefficients for
any panel or single joint which can be modelled by using the dynamic stiffness method.

An alternative to the present method of calculating �t� and �a� might be envisaged
in which the structure is idealized to be of infinite extent in the direction of the stiffeners.
With this approach, equation (27) is not constrained to integer values of n, and incident
waves of all headings can be considered. Although such an approach is routinely adopted
in calculating the diffuse field transmission coefficients of a single joint, the method is not
appropriate in the present case, since the detailed pass band/stop band behaviour of the
system is crucially affected by the finite width of the panel.

3.2.  

The calculation procedure described in the previous section leads to exact results for the
transmission and absorption coefficients of the M-bay stiffened panel which is shown in
Figure 2. A more approximate approach that requires significantly less computational
effort is described in the present section; this approach is based on the general analysis
of a one-dimensional waveguide which is presented in reference [8], and it leads to closed
form approximate results for the transmission and absorption coefficients associated with
each Fourier component n in equation (13).

Initially, it can be noted that for each Fourier component n the system shown in Figure 2
forms a one-dimensional waveguide, for which the wavenumbers in each panel are given
by the solutions of equation (14). By assuming that any evanescent wave components affect
the panel response only in the immediate vicinity of the stiffeners, the response of the panel
can be approximated by a pair of propagating waves so that

wm (y, t)= am eik(L− y) + bm e−ik(L− y), (29)

where am and bm are, respectively, the amplitudes of the right- and left-going waves in panel
m, as shown schematically in Figure 3. The wavenumber k which appears in equation (29)
is the appropriate solution mB of equation (14) for the particular Fourier component n
under investigation.

The waveguide joints (i.e., stiffeners) that are shown in Figure 3 are described here in
terms of the wave transmission coefficient T and the reflection coefficients for right- and
left-travelling waves, R+ and R− say. For the particular value of n under consideration,
these coefficients can be found by making use of the method presented in section 3.1, or
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Figure 3. A schematic of the one-dimensional waveguide.

by using previously published methods [5]. If the stiffeners are undamped, then the
transmission and reflection coefficients can be written in the form [15]

T= t eift, R+ = r eift +ifr +f =R− e2ift, t2 + r2 =1, (30–32)

where t and r are the amplitudes of the coefficients and f=2p/2. With this notation,
the wave components in bay m+1 can be related to those in bay m as follows:

0am+1

bm+11=0 (1/t) e−ikL+ift

−(r/t) eikL+ift +if

−(r/t) e−ikL−ift −if

(1/t) eikL−ift 10am

bm1. (33)

Free wave motion in an infinite periodic structure can be analyzed by employing Bloch’s
theorem [16], which in the present context states that am+1 = lam and bm+1 = lbm , where
l is constant throughout the structure. In structural dynamics, this constant is normally
expressed in the form l=exp (−io− d), where o and d are known, respectively, as the
phase and attenuation constants. It follows by definition that l is an eigenvalue of the
matrix which appears in equation (33), and the associated characteristic equation can
readily be shown to take the form

l2 − (2l/t) cos (kL−ft )+1=0c cos (o−id)= (1/t) cos (kL−ft ). (34)

The solutions of this equation are of the type (l, 1/l), corresponding to right-going and
left-going wave motion. Here, ‘‘right-going’’ is taken to mean that the wave motion is
associated with a net flow of energy to the right; i.e., =am =q =bm =. With this convention
the eigenvectors (am bm ) associated with these two solutions can be written as (1 a1) and
(a2 1) where =ai =E1; it then follows from equation (33) that

a1 = eikL(T/R+)*(e−ikL/T*− l), a2 = e−ikL(T/R+) (eikL/T−1/l). (35, 36)

The wave motion within the periodic system can be described in terms of a right-going
and a left-going ‘‘periodic’’ wave—the wave motion at the left-hand side of the system (see
Figure 3) will be made up of some combination of these two waves, so that it is possible
to write

0a0

b01=A 01
a11+B 0a2

11, (37)

where A and B are complex constants. It then follows from Bloch’s theorem that the wave
motion at the right-hand side of the system must have the form

0aM

bM1=AlM 01
a11+Bl−M 0a2

11. (38)

If the wave motion is caused solely by an incident wave a0 which impinges on the
left-hand side of the system, then it follows on physical grounds that bM =0, from which
it can be deduced that B=−Aa1 l2M. The wave components a0, b0 and aM can then all
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be expressed in terms of the single complex constant A, and the transmission and reflection
coefficients of the system can be written as

tM = b aM

a0 b
2

= =l2M=0 =1− a1 a2 =2
=1− a1 a2 l2M=21, rM = b b0

a0 b
2

= =a1 =20 =1− l2M=2
=1− a1 a2 l2M=21. (39, 40)

The behaviour of the coefficients tM and rM over a frequency band depends strongly on
whether the frequency band of interest lies within a pass band or a stop band. Within a
pass band, it can be noted that the coefficients display a rapid variation with frequency
due to the presence of the term l2M =e−2iMo−2dM in equations (39) and (40), and a slower
variation due to the frequency dependency of a1 and a1 a2. As discussed in reference [8],
tM and rM can be locally ‘‘smoothed’’ by averaging over a cycle of e−2ioM on the assumption
that a1 and a1 a2 remain approximately constant. This approach yields

t̄M =
e−2d=1− a1 a2 =2

1− =a1 a2 =2 e−4dM, (41)

r̄M = =a1 =201− a1 a2 (1+e−4Md)+Z2 − (Z4 −4Z2 +1)1/2

a1 a2 (Z4 −4Z2 +1)1/2 1, (42)

where Z= a1 a2 e−2Md. Equation (41) was first derived in reference [8], and this result has
been extended here by considering also the smoothed reflection coefficient, equation (42).
To facilitate the evaluation of equations (41) and (42) it can be shown that

a1 a2 =1+(2/r2) (t2 sin2 (o−id)− t sin (o−id)z1− t2 cos2 (o−i d) ). (43)

and also from equations (34) and (35) that

=a1 =2 = (1/r2) (1+ t2 e−2d −2t e−d cos (kL−ft − o)). (44)

Equations (43) and (44) enable the smoothed reflection and transmission coefficients of the
stiffened panel to be expressed in terms of the propagation constants d and o, and the
transmission properties r, t and ft of a single stiffener.

In principle, the band-averaged transmission and reflection coefficients can be obtained
by integrating tM and rM over the appropriate wavenumber range, although in practice this
will generally have to be done numerically. A more approximate approach is to assume
that within a stop band tM =0 and rM =1, while within a pass band tM and rM are constant
and equal to the mid-band value (i.e., the value at o= p/2). In this regard, it can be noted
that the value of the mid-band attenuation constant, dmid , is given by [8]

dmid =sinh−1[(1/t) sinh (pM0 /2)], (45)

where M0 =vhn is the modal overlap factor for a single bay of the system; here h is the
loss factor and n=(L/pcg ) (group velocity cg = 1v/1k) is the modal density of the bay.

Within the current analysis framework, the coefficients tM and rM must be evaluated for
all propagating values of transverse wavenumber n and integrated as described in the
previous section to yield the diffuse transmission and reflection coefficients. These may then
be used to evaluate the absorption coefficient of the periodic system under the action of
an incident diffuse wavefield. Finally, the diffuse field power transmission and absorption
coefficients derived in this way can be substituted into equations (8) and (9) to yield the
coupling loss factors and loss factor of the embedded periodic coupling.
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Figure 4. The planform of the example structures.

4. NUMERICAL EXAMPLES

The foregoing theory has been applied to two example stiffened panel systems; in each
case the stiffened panel consists of an eight bay (nine stiffener) periodic system which forms
the coupling between two rectangular unstiffened panels. The planform geometry of each
system is shown in Figure 4: the whole structure is of width 1 m and the two unstiffened
plates are of length 2·4 m and 3·6 m. Each has a thickness of 2 mm. The distinguishing
feature between the two example systems lies in the geometry of the stiffeners, and the two
arrangements considered are detailed in Figure 5. In each case the material is taken to
be aluminium with E=70 GPa, rvol =2700 Kgm−3 and s=0·3. The two systems are
designed such that system 1 has light stiffeners, giving a strongly coupled periodic system,
while system 2 has moderate stiffeners, giving a much more weakly coupled periodic
system. In computing the majority of the results which are presented, the stiffeners have
been modelled by using Euler–Bernoulli beam theory. This allows the present method to
be compared with existing SEA and wave intensity analysis (WIA) codes in the absence
of the complicating effects of the stiffener dynamics, which can arise in deep stiffeners at
higher frequencies [17]. By consistently modelling the stiffeners as beams, the significance
of the assumptions adopted in each of the methods can be assessed for the example
structures. The effect of the dynamics of the stiffener is investigated briefly towards the
end of the present section by using the dynamic stiffness method to model the stiffeners
as fully dynamic plate assemblies.

Example propagation constants o and d for the periodically stiffened panel employed
in system 1 are shown in Figure 6(a) for the case of zero damping (h=0); the results
concern only the first Fourier component of the motion (n=1) and the upper frequency
is limited to 190 Hz. Three pass bands (in which d=0) are discernible in Figure 6(a), and
it can be expected that vibration transmission through a finite stiffened panel will be
concentrated within these bands. This is confirmed by Figure 6(b), in which the

Figure 5. The geometries of the example stiffened structures. (a) System 1; (b) system 2.
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Figure 6. System 1: propagation constants (a), transmission coefficients (b) and absorption coefficients (c) for
n=1. ·–·–, Approximate; ——, exact.

transmission coefficient of the eight-bay panel is shown for the case h=0·01. The ‘‘exact’’
results yielded by the analysis presented in section 3.1 display eight peaks per pass band;
were the panel undamped then the transmission coefficient would achieve unity at each
of these peaks [8]. The approximate results yielded by the analysis presented in section 3.2
provide a good estimate of the average transmission coefficient in each pass band, and a
similar level of agreement is shown in Figure 6(c) for the absorption coefficient.

The results shown in Figure 6 relate only to the n=1 Fourier component. Results for
all relevant values of n over an extended frequency range are shown in Figure 7, where
it can be seen that a complex system of overlapping pass bands occurs. The agreement
between the exact and the approximate values of the transmission and absorption
coefficients is generally good. It has been found that the response predictions are not
sensitive to the value of the absorption coefficient for the present structure, since the
absorption tends to make less than a 20% difference to the internal loss factor via
equation (9).
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Results for the response of the structure (system 1) to rain-on-the-roof forcing of the
left-hand plate are shown in Figure 8. The results are presented in terms of a dB energy
level difference between the two endplates, i.e., 10 log (E2 /E1), and five sets of results are
shown as follows: (i) benchmark exact results computed by applying the dynamic stiffness
method [12] to the complete system; (ii) standard SEA results obtained by treating each
bay of the stiffened panel as a separate subsystem; (iii) wave intensity analysis (WIA)
results in which the SEA diffuse wavefield assumption is relaxed; (iv) results yielded by
the present two-subsystem model with exact transmission and absorption coefficients; and
(v) results yielded by the present method with approximate transmission and absorption
coefficients.

In considering the standard SEA results shown in Figure 8, it can be recalled that the
method is based on the assumptions that (a) the wavefield in each subsystem is diffuse and
(b) all wave components are uncorrelated. Assumption (a) is in error for the present

Figure 7. System 1: propagation constants (a), transmission coefficients (b) and absorption coefficients for all
valid n. ·–·–, Approximate; ——, exact.
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Figure 8. System 1: comparison of methods. ····, Exact (dynamic stiffness method); ×, classical SEA; *, WIA,
50 Fourier components; ·–·–, SEA with approximate coupling ——, SEA with exact coupling.

structure, since the stiffeners act as spatial filters which favour the waves near to normal
incidence. This assumption is relaxed in WIA [13], where the angular distribution of the
wavefield in each subsystem is expanded in terms of a Fourier series—this leads to much
improved results, as shown in Figure 8, although for the present example 50 Fourier
components were needed to ensure converged results at the higher frequencies. Assumption
(b) regarding the phase of the various wave components is also adopted in WIA, and this
leads to differences of the order of 3 dB between WIA and the exact results.

The present approach to modelling the system as two SEA subsystems incorporates a
detailed model of the stiffened panel behaviour, and thus wave filtering and phase effects
are both captured, as evidenced by the good agreement with the exact results shown in
Figure 8. It can be seen that the use of the approximate formulae for the transmission and
absorption coefficients does not lead to a significant loss in the accuracy of the prediction.

The propagation constants o and d associated with the stiffened panel employed in
system 2 are shown in Figure 9(a) for the case of h=0 and n=1. The fact that the system
2 stiffeners are of a heavier gauge than those of system 1 leads to a more weakly coupled
periodic structure which displays narrower pass bands, as revealed by a comparison of
Figures 6 and 9. The fact that the pass bands are narrower reduces the tendency for the
bands associated with the different values of n to overlap and, as shown in Figure 10(a–c),
this produces transmission and absorption coefficients which are highly frequency
dependent. This leads to a very noticeable irregularity in the forced response results which
are shown in Figure 11, with a very sharp response trough occurring in the vicinity of
900 Hz. Neither standard SEA nor WIA is able to predict this behaviour: WIA yields poor
results beyond 700 Hz whereas standard SEA gives a poor prediction over the whole
frequency range. As in the case of system 1, the present modified SEA approach yields
a good response prediction which captures the phase related pass band/stop band nature
of the system dynamics. Again, the results obtained by using the approximate, rather than
exact, values of the absorption and transmission coefficients do not display any marked
loss in accuracy.
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There has been much recent interest in the effect of structural disorder on the behaviour
of a periodic system (see, for example, references [18–20]). Specifically, it has been shown
that relatively small levels of disorder can have a marked effect on the pass band/stop band
behaviour of the system—high levels of attenuation can be produced within a pass band
(‘‘vibration localization’’), and conversely increased vibration transmission can occur
within a stop band. The present analysis procedure is based on the assumption of ‘‘perfect’’
periodic structure behaviour, and it is therefore relevant to investigate the sensitivity of
the response of the systems considered here to structural disorder. To this end, system 2
has been randomized by introducing variability into the length of each bay of the stiffened
panel: the length of the nth bay is changed by an amount Zn , where Zn is chosen from
a uniform distribution with −(X/100)LQZn Q (X/100)L, where L is the nominal bay
length and X is a disorder parameter, so that the system is said to have X% disorder.
Results for the response of the disordered system are presented in Figure 12 for the case
X=10%; the results from 20 realizations (i.e., 20 different random systems) are shown,
together with the ensemble average response. It is clear that the system is particularly

Figure 9. System 2: propagation constants (a), transmission coefficients (b) and absorption coefficients (c) for
n=1. ·–·–, Approximate; ——, exact.
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Figure 10. System 2: propagation constants (a), transmission coefficients (b) and absorption coefficients (c)
for all valid n. ·–·–, Approximate; ——, exact.

sensitive to the effects of disorder in the range 700–900 Hz. This is also found to be the
case for other levels of disorder (X=1%, 5%, 10% and 30%), as shown in Figure 13.
This can be explained by referring to Figure 11, where it can be seen that the results yielded
by WIA for this system are reasonably accurate up to 700 Hz and reasonably inaccurate
beyond 700 Hz; this implies that phase effects (which are neglected in WIA) are very
significant beyond 700 Hz and it is therefore to be expected that the system will be sensitive
to disorder in this region—disorder in the bay length modifies the phase change in a wave
as it propagates from one stiffener to the next. The levels of disorder considered in
Figure 13 are relatively high and certainly beyond normal manufacturing tolerances—once
the disorder falls to X=1%, the present analysis method, based on ideal periodic structure
behaviour, yields a good estimate of the system response across the whole frequency range.

As mentioned earlier in this section, it has previously been shown that ‘‘internal’’
stiffener dynamics can in some cases have a significant effect on the behaviour of a
periodically stiffened system [17]. These effects have not been considered here, since
Euler–Bernoulli beam theory has been used to model the stiffeners—this has been done
consistently, both in the dynamic stiffness forced response analysis and in the computation
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Figure 11. System 2: comparison of methods. Key as Figure 8.

of the transmission and absorption coefficients of the stiffened panel. By using the dynamic
stiffness method [12], it is in fact possible to compute the response of the system with full
account taken of stiffener dynamics by modelling each stiffener as an assembly of plate
elements. Results obtained in this way are compared with the previous ‘‘beam model’’ in
Figures 14 and 15. Clearly, stiffener dynamic effects have little influence on the response
of system 1, although there is a marked change in the response of system 2. In the latter
case, the response shows a more clearly distinguishable pass band/stop structure, and this

Figure 12. The effect of 10% disorder on system 2. ——, Ideal panel; ·–·–, emsemble average; ····, 20 disordered
runs.
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Figure 13. The effect of disorder on system 2. ——, Ordered , 1%; – –, 5%; ····, 10%; ·–·–, 30%.

would be captured by the present method provided that stiffener dynamics were fully
considered in the calculation of the band averaged transmission and absorption
coefficients. This can be achieved by including stiffener dynamics in the matrix DE which
appears in equation (17), or by extending the analysis contained in reference [5] to the case
of full stiffener dynamics (as recently performed by Heron [21]).

Figure 14. System 1: comparison of stiffener model. ····, Beam stiffeners; ——, dynamic stiffeners.
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Figure 15. System 2: comparison of stiffener model. Key as Figure 14.

5. CONCLUSIONS

This work has been concerned with how a stiffened panel might be modelled within the
context of Statistical Energy Analysis. It has been suggested that such a panel might be
modelled as a damped coupling element the transmission and absorption coefficients of
which are calculated on the basis of periodic structure theory. In this regard it has been
shown that the diffuse field transmission and absorption coefficients can be estimated to
an acceptable degree of accuracy by considering the transmission properties of a single
stiffener and employing the theory developed in reference [8]. The main advantage of the
proposed method is that the pass band/stop band behaviour of the periodically stiffened
panel is encapsulated within the absorption and transmission coefficients, so that the
response predictions yielded by the method incorporate these effects. This compares
with a standard SEA approach in which all phase effects are averaged, so that periodic
structure effects cannot readily be modelled. For the type of structure considered here,
wave-intensity analysis (WIA) offers considerable improvement over standard SEA by
allowing for the presence of non-diffuse wavefields, although again, phase effects and pass
band/stop band behaviour cannot be captured.

The present study has indicated that the ‘‘damped coupling’’ approach to modelling a
stiffened panel is certainly a feasible and accurate technique for the type of structure
considered here; further work is needed to consider in situ panels in more complex
structural geometries, and efficient means of employing the approach in a large-scale SEA
response predictions will need to be developed.
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